think globally.
act domestically. home free patterns table of contents EMail Me 
January 28, 2003
Knitting Math 101 Ginn
Knitting Math 101 Ginn asked where one goes to learn knitting math, and the answer, for today at least, is right here! This lesson is not really lesson 1  but it's the one I just did, so here it is: Knitting and the Pythagorean Theorem
This is the Pythagorean Theorem. You learned it in high school geometry. My teacher was Mr. Marcy. He loved Albert Einstein and Willie Nelson. We had inclass birthday parties for each. I liked Geometry much more than Algebra or Calculus.
This is your sweater on the Pythagorean Theorem. Any questions? Here's the big question: How do I make the decreases on the body and the sleeves so that the raglans match up? First the bits we do know: I know about how wide the sleeve opening needs to be. I'll call this number "A" and say that it needs to be about 5 inches for a baby sweater*. I know how wide to make the bottom of the sweater and the neck opening. Let's say d = 11 and e = 7 (e = 7 because this is a modified boat neck).
Sharpen your pencils and get out your calculators because it's math time! Let's solve for B and C so we know where we stand.
Sometimes you can just do the decreases the same on the sleeves and the body, but that wouldn't work in this case because I need to get rid of more stitches on the sleeves than I do on the body. How do I know this?
There is a second right triangle on the sleeve.
We know that C must be the same on both the sleeve and the body since we want them to match up when we sew them together. C = 5.4. 2B + 1 is the total width of the sleeve and we want that to equal 10, so B = 4.5. Now once again, we turn to Pythagoras.
So, now we know all the measurements for the sleeves and the body. Next time, the rubber meets the road: How to turn these numbers into a knitting pattern.  06:40 AM
Comments
